MMRAG-DocQA: A Multi-Modal Retrieval-Augmented Generation Method for Document Question-Answering with Hierarchical Index and Multi-Granularity Retrieval (2508.00579v1)
Abstract: The multi-modal long-context document question-answering task aims to locate and integrate multi-modal evidences (such as texts, tables, charts, images, and layouts) distributed across multiple pages, for question understanding and answer generation. The existing methods can be categorized into Large Vision-LLM (LVLM)-based and Retrieval-Augmented Generation (RAG)-based methods. However, the former were susceptible to hallucinations, while the latter struggled for inter-modal disconnection and cross-page fragmentation. To address these challenges, a novel multi-modal RAG model, named MMRAG-DocQA, was proposed, leveraging both textual and visual information across long-range pages to facilitate accurate question answering. A hierarchical indexing method with the integration of flattened in-page chunks and topological cross-page chunks was designed to jointly establish in-page multi-modal associations and long-distance cross-page dependencies. By means of joint similarity evaluation and LLM-based re-ranking, a multi-granularity semantic retrieval method, including the page-level parent page retrieval and document-level summary retrieval, was proposed to foster multi-modal evidence connection and long-distance evidence integration and reasoning. Experimental results performed on public datasets, MMLongBench-Doc and LongDocURL, demonstrated the superiority of our MMRAG-DocQA method in understanding and answering modality-rich and multi-page documents.
Collections
Sign up for free to add this paper to one or more collections.