Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 38 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 466 tok/s Pro
Kimi K2 243 tok/s Pro
2000 character limit reached

Diffusion-Based User-Guided Data Augmentation for Coronary Stenosis Detection (2508.00438v1)

Published 1 Aug 2025 in eess.IV and cs.CV

Abstract: Coronary stenosis is a major risk factor for ischemic heart events leading to increased mortality, and medical treatments for this condition require meticulous, labor-intensive analysis. Coronary angiography provides critical visual cues for assessing stenosis, supporting clinicians in making informed decisions for diagnosis and treatment. Recent advances in deep learning have shown great potential for automated localization and severity measurement of stenosis. In real-world scenarios, however, the success of these competent approaches is often hindered by challenges such as limited labeled data and class imbalance. In this study, we propose a novel data augmentation approach that uses an inpainting method based on a diffusion model to generate realistic lesions, allowing user-guided control of severity. Extensive evaluation on lesion detection and severity classification across various synthetic dataset sizes shows superior performance of our method on both a large-scale in-house dataset and a public coronary angiography dataset. Furthermore, our approach maintains high detection and classification performance even when trained with limited data, highlighting its clinical importance in improving the assessment of severity of stenosis and optimizing data utilization for more reliable decision support.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube