Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
106 tokens/sec
Gemini 2.5 Pro Premium
53 tokens/sec
GPT-5 Medium
26 tokens/sec
GPT-5 High Premium
27 tokens/sec
GPT-4o
109 tokens/sec
DeepSeek R1 via Azure Premium
91 tokens/sec
GPT OSS 120B via Groq Premium
515 tokens/sec
Kimi K2 via Groq Premium
213 tokens/sec
2000 character limit reached

SA-GCS: Semantic-Aware Gaussian Curriculum Scheduling for UAV Vision-Language Navigation (2508.00390v1)

Published 1 Aug 2025 in cs.CL

Abstract: Unmanned Aerial Vehicle (UAV) Vision-Language Navigation (VLN) aims to enable agents to accurately localize targets and plan flight paths in complex environments based on natural language instructions, with broad applications in intelligent inspection, disaster rescue, and urban monitoring. Recent progress in Vision-LLMs (VLMs) has provided strong semantic understanding for this task, while reinforcement learning (RL) has emerged as a promising post-training strategy to further improve generalization. However, existing RL methods often suffer from inefficient use of training data, slow convergence, and insufficient consideration of the difficulty variation among training samples, which limits further performance improvement. To address these challenges, we propose \textbf{Semantic-Aware Gaussian Curriculum Scheduling (SA-GCS)}, a novel training framework that systematically integrates Curriculum Learning (CL) into RL. SA-GCS employs a Semantic-Aware Difficulty Estimator (SA-DE) to quantify the complexity of training samples and a Gaussian Curriculum Scheduler (GCS) to dynamically adjust the sampling distribution, enabling a smooth progression from easy to challenging tasks. This design significantly improves training efficiency, accelerates convergence, and enhances overall model performance. Extensive experiments on the CityNav benchmark demonstrate that SA-GCS consistently outperforms strong baselines across all metrics, achieves faster and more stable convergence, and generalizes well across models of different scales, highlighting its robustness and scalability. The implementation of our approach is publicly available.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube