Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 43 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 466 tok/s Pro
Kimi K2 225 tok/s Pro
2000 character limit reached

R1-ACT: Efficient Reasoning Model Safety Alignment by Activating Safety Knowledge (2508.00324v1)

Published 1 Aug 2025 in cs.AI and cs.CL

Abstract: Although large reasoning models (LRMs) have demonstrated impressive capabilities on complex tasks, recent studies reveal that these models frequently fulfill harmful user instructions, raising significant safety concerns. In this paper, we investigate the underlying cause of LRM safety risks and find that models already possess sufficient safety knowledge but fail to activate it during reasoning. Based on this insight, we propose R1-Act, a simple and efficient post-training method that explicitly triggers safety knowledge through a structured reasoning process. R1-Act achieves strong safety improvements while preserving reasoning performance, outperforming prior alignment methods. Notably, it requires only 1,000 training examples and 90 minutes of training on a single RTX A6000 GPU. Extensive experiments across multiple LRM backbones and sizes demonstrate the robustness, scalability, and practical efficiency of our approach.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube