Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

Thermodynamics-Inspired Computing with Oscillatory Neural Networks for Inverse Matrix Computation (2507.22544v1)

Published 30 Jul 2025 in cs.LG and cs.ET

Abstract: We describe a thermodynamic-inspired computing paradigm based on oscillatory neural networks (ONNs). While ONNs have been widely studied as Ising machines for tackling complex combinatorial optimization problems, this work investigates their feasibility in solving linear algebra problems, specifically the inverse matrix. Grounded in thermodynamic principles, we analytically demonstrate that the linear approximation of the coupled Kuramoto oscillator model leads to the inverse matrix solution. Numerical simulations validate the theoretical framework, and we examine the parameter regimes that computation has the highest accuracy.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com