Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Intent-Aware Neural Query Reformulation for Behavior-Aligned Product Search (2507.22213v1)

Published 29 Jul 2025 in cs.IR and cs.LG

Abstract: Understanding and modeling buyer intent is a foundational challenge in optimizing search query reformulation within the dynamic landscape of e-commerce search systems. This work introduces a robust data pipeline designed to mine and analyze large-scale buyer query logs, with a focus on extracting fine-grained intent signals from both explicit interactions and implicit behavioral cues. Leveraging advanced sequence mining techniques and supervised learning models, the pipeline systematically captures patterns indicative of latent purchase intent, enabling the construction of a high-fidelity, intent-rich dataset. The proposed framework facilitates the development of adaptive query rewrite strategies by grounding reformulations in inferred user intent rather than surface-level lexical signals. This alignment between query rewriting and underlying user objectives enhances both retrieval relevance and downstream engagement metrics. Empirical evaluations across multiple product verticals demonstrate measurable gains in precision-oriented relevance metrics, underscoring the efficacy of intent-aware reformulation. Our findings highlight the value of intent-centric modeling in bridging the gap between sparse user inputs and complex product discovery goals, and establish a scalable foundation for future research in user-aligned neural retrieval and ranking systems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com