Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
92 tokens/sec
Gemini 2.5 Pro Premium
51 tokens/sec
GPT-5 Medium
32 tokens/sec
GPT-5 High Premium
25 tokens/sec
GPT-4o
103 tokens/sec
DeepSeek R1 via Azure Premium
64 tokens/sec
GPT OSS 120B via Groq Premium
469 tokens/sec
Kimi K2 via Groq Premium
227 tokens/sec
2000 character limit reached

How Well Does First-Token Entropy Approximate Word Entropy as a Psycholinguistic Predictor? (2507.22209v1)

Published 29 Jul 2025 in cs.CL

Abstract: Contextual entropy is a psycholinguistic measure capturing the anticipated difficulty of processing a word just before it is encountered. Recent studies have tested for entropy-related effects as a potential complement to well-known effects from surprisal. For convenience, entropy is typically estimated based on a LLM's probability distribution over a word's first subword token. However, this approximation results in underestimation and potential distortion of true word entropy. To address this, we generate Monte Carlo (MC) estimates of word entropy that allow words to span a variable number of tokens. Regression experiments on reading times show divergent results between first-token and MC word entropy, suggesting a need for caution in using first-token approximations of contextual entropy.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.