Few-Shot Vision-Language Reasoning for Satellite Imagery via Verifiable Rewards (2507.21745v1)
Abstract: Recent advances in large language and vision-LLMs have enabled strong reasoning capabilities, yet they remain impractical for specialized domains like remote sensing, where annotated data is scarce and expensive. We present the first few-shot reinforcement learning with verifiable reward (RLVR) framework for satellite imagery that eliminates the need for caption supervision--relying solely on lightweight, rule-based binary or IoU-based rewards. Adapting the "1-shot RLVR" paradigm from LLMs to vision-LLMs, we employ policy-gradient optimization with as few as one curated example to align model outputs for satellite reasoning tasks. Comprehensive experiments across multiple remote sensing benchmarks--including classification, visual question answering, and grounding--show that even a single example yields substantial improvements over the base model. Scaling to 128 examples matches or exceeds models trained on thousands of annotated samples. While the extreme one-shot setting can induce mild, task-specific overfitting, our approach consistently demonstrates robust generalization and efficiency across diverse tasks. Further, we find that prompt design and loss weighting significantly influence training stability and final accuracy. Our method enables cost-effective and data-efficient development of domain-specialist vision-language reasoning models, offering a pragmatic recipe for data-scarce fields: start from a compact VLM, curate a handful of reward-checkable cases, and train via RLVR.
Collections
Sign up for free to add this paper to one or more collections.