Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
Gemini 2.5 Pro Premium
52 tokens/sec
GPT-5 Medium
24 tokens/sec
GPT-5 High Premium
28 tokens/sec
GPT-4o
85 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
478 tokens/sec
Kimi K2 via Groq Premium
221 tokens/sec
2000 character limit reached

Solution for Meta KDD Cup'25: A Comprehensive Three-Step Framework for Vision Question Answering (2507.21520v1)

Published 29 Jul 2025 in cs.IR

Abstract: Vision LLMs (VLLMs) have improved multi-modal understanding and visual question answering (VQA), but still suffer from hallucinated answers. Multi-modal Retrieval-Augmented Generation (RAG) helps address these issues by incorporating external information, yet challenges remain in visual context comprehension, multi-source retrieval, and multi-turn interactions. To address these challenges, Meta constructed the CRAG-MM benchmark and launched the CRAG-MM Challenge at KDD Cup 2025, which consists of three tasks. This paper describes the solutions of all tasks in Meta KDD Cup'25 from BlackPearl team. We use a single model for each task, with key methods including data augmentation, RAG, reranking, and multi-task fine-tuning. Our solution achieve automatic evaluation rankings of 3rd, 3rd, and 1st on the three tasks, and win second place in Task3 after human evaluation.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.