Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

On Quantum and Quantum-Inspired Maximum Likelihood Estimation and Filtering of Stochastic Volatility Models (2507.21337v1)

Published 28 Jul 2025 in quant-ph

Abstract: Stochastic volatility models are the backbone of financial engineering. We study both continuous time diffusions as well as discrete time models. We propose two novel approaches to estimating stochastic volatility diffusions, one using Quantum-Inspired Classical Hidden Markov Models (HMM) and the other using Quantum Hidden Markov Models. In both cases we have approximate likelihood functions and filtering algorithms that are easy to compute. We show that the non-asymptotic bounds for the quantum HMM are tighter compared to those with classical model estimates.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com