Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

A Generalized Cramér-Rao Bound Using Information Geometry (2507.21022v1)

Published 28 Jul 2025 in math.ST, cs.IT, math.IT, stat.OT, and stat.TH

Abstract: In information geometry, statistical models are considered as differentiable manifolds, where each probability distribution represents a unique point on the manifold. A Riemannian metric can be systematically obtained from a divergence function using Eguchi's theory (1992); the well-known Fisher-Rao metric is obtained from the Kullback-Leibler (KL) divergence. The geometric derivation of the classical Cram\'er-Rao Lower Bound (CRLB) by Amari and Nagaoka (2000) is based on this metric. In this paper, we study a Riemannian metric obtained by applying Eguchi's theory to the Basu-Harris-Hjort-Jones (BHHJ) divergence (1998) and derive a generalized Cram\'er-Rao bound using Amari-Nagaoka's approach. There are potential applications for this bound in robust estimation.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com