Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
90 tokens/sec
Gemini 2.5 Pro Premium
54 tokens/sec
GPT-5 Medium
19 tokens/sec
GPT-5 High Premium
18 tokens/sec
GPT-4o
104 tokens/sec
DeepSeek R1 via Azure Premium
78 tokens/sec
GPT OSS 120B via Groq Premium
467 tokens/sec
Kimi K2 via Groq Premium
197 tokens/sec
2000 character limit reached

Multivariate Conformal Prediction via Conformalized Gaussian Scoring (2507.20941v1)

Published 28 Jul 2025 in stat.ML, cs.AI, cs.LG, stat.ME, and stat.OT

Abstract: While achieving exact conditional coverage in conformal prediction is unattainable without making strong, untestable regularity assumptions, the promise of conformal prediction hinges on finding approximations to conditional guarantees that are realizable in practice. A promising direction for obtaining conditional dependence for conformal sets--in particular capturing heteroskedasticity--is through estimating the conditional density $\mathbb{P}_{Y|X}$ and conformalizing its level sets. Previous work in this vein has focused on nonconformity scores based on the empirical cumulative distribution function (CDF). Such scores are, however, computationally costly, typically requiring expensive sampling methods. To avoid the need for sampling, we observe that the CDF-based score reduces to a Mahalanobis distance in the case of Gaussian scores, yielding a closed-form expression that can be directly conformalized. Moreover, the use of a Gaussian-based score opens the door to a number of extensions of the basic conformal method; in particular, we show how to construct conformal sets with missing output values, refine conformal sets as partial information about $Y$ becomes available, and construct conformal sets on transformations of the output space. Finally, empirical results indicate that our approach produces conformal sets that more closely approximate conditional coverage in multivariate settings compared to alternative methods.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube