Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
107 tokens/sec
Gemini 2.5 Pro Premium
58 tokens/sec
GPT-5 Medium
20 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
101 tokens/sec
DeepSeek R1 via Azure Premium
84 tokens/sec
GPT OSS 120B via Groq Premium
463 tokens/sec
Kimi K2 via Groq Premium
200 tokens/sec
2000 character limit reached

Enhancing Project-Specific Code Completion by Inferring Internal API Information (2507.20888v1)

Published 28 Jul 2025 in cs.SE and cs.CL

Abstract: Project-specific code completion is a critical task that leverages context from a project to generate accurate code. State-of-the-art methods use retrieval-augmented generation (RAG) with LLMs and project information for code completion. However, they often struggle to incorporate internal API information, which is crucial for accuracy, especially when APIs are not explicitly imported in the file. To address this, we propose a method to infer internal API information without relying on imports. Our method extends the representation of APIs by constructing usage examples and semantic descriptions, building a knowledge base for LLMs to generate relevant completions. We also introduce ProjBench, a benchmark that avoids leaked imports and consists of large-scale real-world projects. Experiments on ProjBench and CrossCodeEval show that our approach significantly outperforms existing methods, improving code exact match by 22.72% and identifier exact match by 18.31%. Additionally, integrating our method with existing baselines boosts code match by 47.80% and identifier match by 35.55%.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com