Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

How Chain-of-Thought Works? Tracing Information Flow from Decoding, Projection, and Activation (2507.20758v1)

Published 28 Jul 2025 in cs.AI

Abstract: Chain-of-Thought (CoT) prompting significantly enhances model reasoning, yet its internal mechanisms remain poorly understood. We analyze CoT's operational principles by reversely tracing information flow across decoding, projection, and activation phases. Our quantitative analysis suggests that CoT may serve as a decoding space pruner, leveraging answer templates to guide output generation, with higher template adherence strongly correlating with improved performance. Furthermore, we surprisingly find that CoT modulates neuron engagement in a task-dependent manner: reducing neuron activation in open-domain tasks, yet increasing it in closed-domain scenarios. These findings offer a novel mechanistic interpretability framework and critical insights for enabling targeted CoT interventions to design more efficient and robust prompts. We released our code and data at https://anonymous.4open.science/r/cot-D247.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.