Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
96 tokens/sec
Gemini 2.5 Pro Premium
48 tokens/sec
GPT-5 Medium
15 tokens/sec
GPT-5 High Premium
23 tokens/sec
GPT-4o
104 tokens/sec
DeepSeek R1 via Azure Premium
77 tokens/sec
GPT OSS 120B via Groq Premium
466 tokens/sec
Kimi K2 via Groq Premium
201 tokens/sec
2000 character limit reached

CaliDrop: KV Cache Compression with Calibration (2507.19906v1)

Published 26 Jul 2025 in cs.CL

Abstract: LLMs require substantial computational resources during generation. While the Key-Value (KV) cache significantly accelerates this process by storing attention intermediates, its memory footprint grows linearly with sequence length, batch size, and model size, creating a bottleneck in long-context scenarios. Various KV cache compression techniques, including token eviction, quantization, and low-rank projection, have been proposed to mitigate this bottleneck, often complementing each other. This paper focuses on enhancing token eviction strategies. Token eviction leverages the observation that the attention patterns are often sparse, allowing for the removal of less critical KV entries to save memory. However, this reduction usually comes at the cost of notable accuracy degradation, particularly under high compression ratios. To address this issue, we propose \textbf{CaliDrop}, a novel strategy that enhances token eviction through calibration. Our preliminary experiments show that queries at nearby positions exhibit high similarity. Building on this observation, CaliDrop performs speculative calibration on the discarded tokens to mitigate the accuracy loss caused by token eviction. Extensive experiments demonstrate that CaliDrop significantly improves the accuracy of existing token eviction methods.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com

alphaXiv