Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Quantum-Informed Machine Learning for Chaotic Systems (2507.19861v1)

Published 26 Jul 2025 in quant-ph and cs.LG

Abstract: Learning the behaviour of chaotic systems remains challenging due to instability in long-term predictions and difficulties in accurately capturing invariant statistical properties. While quantum machine learning offers a promising route to efficiently capture physical properties from high-dimensional data, its practical deployment is hindered by current hardware noise and limited scalability. We introduce a quantum-informed machine learning framework for learning partial differential equations, with an application focus on chaotic systems. A quantum circuit Born machine is employed to learn the invariant properties of chaotic dynamical systems, achieving substantial memory efficiency by representing these complex physical statistics with a compact set of trainable circuit parameters. This approach reduces the data storage requirement by over two orders of magnitude compared to the raw simulation data. The resulting statistical quantum-informed prior is then incorporated into a Koopman-based auto-regressive model to address issues such as gradient vanishing or explosion, while maintaining long-term statistical fidelity. The framework is evaluated on three representative systems: the Kuramoto-Sivashinsky equation, two-dimensional Kolmogorov flow and turbulent channel flow. In all cases, the quantum-informed model achieves superior performance compared to its classical counterparts without quantum priors. This hybrid architecture offers a practical route for learning dynamical systems using near-term quantum hardware.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com