Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 45 tok/s
GPT-5 High 43 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

Extending Group Relative Policy Optimization to Continuous Control: A Theoretical Framework for Robotic Reinforcement Learning (2507.19555v1)

Published 25 Jul 2025 in cs.RO and cs.AI

Abstract: Group Relative Policy Optimization (GRPO) has shown promise in discrete action spaces by eliminating value function dependencies through group-based advantage estimation. However, its application to continuous control remains unexplored, limiting its utility in robotics where continuous actions are essential. This paper presents a theoretical framework extending GRPO to continuous control environments, addressing challenges in high-dimensional action spaces, sparse rewards, and temporal dynamics. Our approach introduces trajectory-based policy clustering, state-aware advantage estimation, and regularized policy updates designed for robotic applications. We provide theoretical analysis of convergence properties and computational complexity, establishing a foundation for future empirical validation in robotic systems including locomotion and manipulation tasks.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube