Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Jailbreaking Large Language Diffusion Models: Revealing Hidden Safety Flaws in Diffusion-Based Text Generation (2507.19227v1)

Published 25 Jul 2025 in cs.CL

Abstract: Large Language Diffusion Models (LLDMs) exhibit comparable performance to LLMs while offering distinct advantages in inference speed and mathematical reasoning tasks.The precise and rapid generation capabilities of LLDMs amplify concerns of harmful generations, while existing jailbreak methodologies designed for LLMs prove limited effectiveness against LLDMs and fail to expose safety vulnerabilities.Successful defense cannot definitively resolve harmful generation concerns, as it remains unclear whether LLDMs possess safety robustness or existing attacks are incompatible with diffusion-based architectures.To address this, we first reveal the vulnerability of LLDMs to jailbreak and demonstrate that attack failure in LLDMs stems from fundamental architectural differences.We present a PArallel Decoding jailbreak (PAD) for diffusion-based LLMs. PAD introduces Multi-Point Attention Attack, which guides parallel generative processes toward harmful outputs that inspired by affirmative response patterns in LLMs. Experimental evaluations across four LLDMs demonstrate that PAD achieves jailbreak attack success rates by 97%, revealing significant safety vulnerabilities. Furthermore, compared to autoregressive LLMs of the same size, LLDMs increase the harmful generation speed by 2x, significantly highlighting risks of uncontrolled misuse.Through comprehensive analysis, we provide an investigation into LLDM architecture, offering critical insights for the secure deployment of diffusion-based LLMs.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.