Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Latent Granular Resynthesis using Neural Audio Codecs (2507.19202v1)

Published 25 Jul 2025 in cs.SD, cs.LG, eess.AS, and eess.SP

Abstract: We introduce a novel technique for creative audio resynthesis that operates by reworking the concept of granular synthesis at the latent vector level. Our approach creates a "granular codebook" by encoding a source audio corpus into latent vector segments, then matches each latent grain of a target audio signal to its closest counterpart in the codebook. The resulting hybrid sequence is decoded to produce audio that preserves the target's temporal structure while adopting the source's timbral characteristics. This technique requires no model training, works with diverse audio materials, and naturally avoids the discontinuities typical of traditional concatenative synthesis through the codec's implicit interpolation during decoding. We include supplementary material at https://github.com/naotokui/latentgranular/ , as well as a proof-of-concept implementation to allow users to experiment with their own sounds at https://huggingface.co/spaces/naotokui/latentgranular .

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com