Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

MLLM-based Speech Recognition: When and How is Multimodality Beneficial? (2507.19037v1)

Published 25 Jul 2025 in cs.SD, cs.CL, cs.MM, and eess.AS

Abstract: Recent advances in multi-modal LLMs (MLLMs) have opened new possibilities for unified modeling of speech, text, images, and other modalities. Building on our prior work, this paper examines the conditions and model architectures under which multiple input modalities can improve automatic speech recognition (ASR) accuracy in noisy environments. Through experiments on synthetic and real-world data, we find that (1) harnessing more modalities usually improves ASR accuracy, as each modality provides complementary information, but the improvement depends on the amount of auditory noise. (2) Synchronized modalities (e.g., lip movements) are more useful at high noise levels whereas unsynchronized modalities (e.g., image context) are most helpful at moderate noise levels. (3) Higher-quality visual representations consistently improve ASR accuracy, highlighting the importance of developing more powerful visual encoders. (4) Mamba exhibits similar trends regarding the benefits of multimodality as do Transformers. (5) The input order of modalities as well as their weights in the loss function can significantly impact accuracy. These findings both offer practical insights and help to deepen our understanding of multi-modal speech recognition under challenging conditions.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com