Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Revisiting Bisimulation Metric for Robust Representations in Reinforcement Learning (2507.18519v1)

Published 24 Jul 2025 in cs.LG

Abstract: Bisimulation metric has long been regarded as an effective control-related representation learning technique in various reinforcement learning tasks. However, in this paper, we identify two main issues with the conventional bisimulation metric: 1) an inability to represent certain distinctive scenarios, and 2) a reliance on predefined weights for differences in rewards and subsequent states during recursive updates. We find that the first issue arises from an imprecise definition of the reward gap, whereas the second issue stems from overlooking the varying importance of reward difference and next-state distinctions across different training stages and task settings. To address these issues, by introducing a measure for state-action pairs, we propose a revised bisimulation metric that features a more precise definition of reward gap and novel update operators with adaptive coefficient. We also offer theoretical guarantees of convergence for our proposed metric and its improved representation distinctiveness. In addition to our rigorous theoretical analysis, we conduct extensive experiments on two representative benchmarks, DeepMind Control and Meta-World, demonstrating the effectiveness of our approach.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com