Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
Gemini 2.5 Pro Premium
42 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
12 tokens/sec
GPT-4o
92 tokens/sec
DeepSeek R1 via Azure Premium
92 tokens/sec
GPT OSS 120B via Groq Premium
480 tokens/sec
Kimi K2 via Groq Premium
195 tokens/sec
2000 character limit reached

DepthDark: Robust Monocular Depth Estimation for Low-Light Environments (2507.18243v1)

Published 24 Jul 2025 in cs.CV and cs.AI

Abstract: In recent years, foundation models for monocular depth estimation have received increasing attention. Current methods mainly address typical daylight conditions, but their effectiveness notably decreases in low-light environments. There is a lack of robust foundational models for monocular depth estimation specifically designed for low-light scenarios. This largely stems from the absence of large-scale, high-quality paired depth datasets for low-light conditions and the effective parameter-efficient fine-tuning (PEFT) strategy. To address these challenges, we propose DepthDark, a robust foundation model for low-light monocular depth estimation. We first introduce a flare-simulation module and a noise-simulation module to accurately simulate the imaging process under nighttime conditions, producing high-quality paired depth datasets for low-light conditions. Additionally, we present an effective low-light PEFT strategy that utilizes illumination guidance and multiscale feature fusion to enhance the model's capability in low-light environments. Our method achieves state-of-the-art depth estimation performance on the challenging nuScenes-Night and RobotCar-Night datasets, validating its effectiveness using limited training data and computing resources.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.