Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 37 tok/s
GPT-5 High 28 tok/s Pro
GPT-4o 110 tok/s
GPT OSS 120B 468 tok/s Pro
Kimi K2 236 tok/s Pro
2000 character limit reached

Maximizing Prefix-Confidence at Test-Time Efficiently Improves Mathematical Reasoning (2507.18122v1)

Published 24 Jul 2025 in cs.LG

Abstract: Recent work has shown that LLMs can self-improve by maximizing their own confidence in their predictions, without relying on external verifiers or reward signals. In this work, we study the test-time scaling of LLMs for mathematical reasoning tasks, where the model's own confidence is used to select the most promising attempts. Surprisingly, we find that we can achieve significant performance gains by continuing only the most promising attempt, selected by the model's prefix-confidence. We systematically evaluate prefix-confidence scaling on five mathematical reasoning datasets: the school-level GSM8K and MATH500, and the competition-level AMC23, AIME24, and AIME25. We find that prefix-confidence scaling with prefixes of only 32 tokens achieves a better accuracy-compute trade-off than majority voting. Moreover, prefix-confidence scaling appears less susceptible than BoN to length biases. Finally, we also evaluate test-time training with prefix-confidence and find that, while outperforming the base model, it does not improve over prefix-confidence scaling.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com