Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Large-scale entity resolution via microclustering Ewens--Pitman random partitions (2507.18101v1)

Published 24 Jul 2025 in stat.ME, math.ST, stat.CO, stat.ML, and stat.TH

Abstract: We introduce the microclustering Ewens--Pitman model for random partitions, obtained by scaling the strength parameter of the Ewens--Pitman model linearly with the sample size. The resulting random partition is shown to have the microclustering property, namely: the size of the largest cluster grows sub-linearly with the sample size, while the number of clusters grows linearly. By leveraging the interplay between the Ewens--Pitman random partition with the Pitman--Yor process, we develop efficient variational inference schemes for posterior computation in entity resolution. Our approach achieves a speed-up of three orders of magnitude over existing Bayesian methods for entity resolution, while maintaining competitive empirical performance.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com