Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Sliding Window Informative Canonical Correlation Analysis (2507.17921v1)

Published 23 Jul 2025 in stat.ML, cs.LG, eess.IV, math.ST, stat.CO, stat.ME, and stat.TH

Abstract: Canonical correlation analysis (CCA) is a technique for finding correlated sets of features between two datasets. In this paper, we propose a novel extension of CCA to the online, streaming data setting: Sliding Window Informative Canonical Correlation Analysis (SWICCA). Our method uses a streaming principal component analysis (PCA) algorithm as a backend and uses these outputs combined with a small sliding window of samples to estimate the CCA components in real time. We motivate and describe our algorithm, provide numerical simulations to characterize its performance, and provide a theoretical performance guarantee. The SWICCA method is applicable and scalable to extremely high dimensions, and we provide a real-data example that demonstrates this capability.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com