Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Generalized Dual Discriminator GANs (2507.17684v1)

Published 23 Jul 2025 in cs.LG, cs.IT, math.IT, and stat.ML

Abstract: Dual discriminator generative adversarial networks (D2 GANs) were introduced to mitigate the problem of mode collapse in generative adversarial networks. In D2 GANs, two discriminators are employed alongside a generator: one discriminator rewards high scores for samples from the true data distribution, while the other favors samples from the generator. In this work, we first introduce dual discriminator $\alpha$-GANs (D2 $\alpha$-GANs), which combines the strengths of dual discriminators with the flexibility of a tunable loss function, $\alpha$-loss. We further generalize this approach to arbitrary functions defined on positive reals, leading to a broader class of models we refer to as generalized dual discriminator generative adversarial networks. For each of these proposed models, we provide theoretical analysis and show that the associated min-max optimization reduces to the minimization of a linear combination of an $f$-divergence and a reverse $f$-divergence. This generalizes the known simplification for D2-GANs, where the objective reduces to a linear combination of the KL-divergence and the reverse KL-divergence. Finally, we perform experiments on 2D synthetic data and use multiple performance metrics to capture various advantages of our GANs.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

alphaXiv

  1. Generalized Dual Discriminator GANs (4 likes, 0 questions)