Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

Confidence Calibration in Vision-Language-Action Models (2507.17383v1)

Published 23 Jul 2025 in cs.RO and cs.LG

Abstract: Trustworthy robot behavior requires not only high levels of task success but also that the robot can reliably quantify how likely it is to succeed. To this end, we present the first systematic study of confidence calibration in vision-language-action (VLA) foundation models, which map visual observations and natural-language instructions to low-level robot motor commands. We begin with extensive benchmarking to understand the critical relationship between task success and calibration error across multiple datasets and VLA variants, finding that task performance and calibration are not in tension. Next, we introduce prompt ensembles for VLAs, a lightweight, Bayesian-inspired algorithm that averages confidence across paraphrased instructions and consistently improves calibration. We further analyze calibration over the task time horizon, showing that confidence is often most reliable after making some progress, suggesting natural points for risk-aware intervention. Finally, we reveal differential miscalibration across action dimensions and propose action-wise Platt scaling, a method to recalibrate each action dimension independently to produce better confidence estimates. Our aim in this study is to begin to develop the tools and conceptual understanding necessary to render VLAs both highly performant and highly trustworthy via reliable uncertainty quantification.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com