Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

PointLAMA: Latent Attention meets Mamba for Efficient Point Cloud Pretraining (2507.17296v1)

Published 23 Jul 2025 in cs.CV

Abstract: Mamba has recently gained widespread attention as a backbone model for point cloud modeling, leveraging a state-space architecture that enables efficient global sequence modeling with linear complexity. However, its lack of local inductive bias limits its capacity to capture fine-grained geometric structures in 3D data. To address this limitation, we propose \textbf{PointLAMA}, a point cloud pretraining framework that combines task-aware point cloud serialization, a hybrid encoder with integrated Latent Attention and Mamba blocks, and a conditional diffusion mechanism built upon the Mamba backbone. Specifically, the task-aware point cloud serialization employs Hilbert/Trans-Hilbert space-filling curves and axis-wise sorting to structurally align point tokens for classification and segmentation tasks, respectively. Our lightweight Latent Attention block features a Point-wise Multi-head Latent Attention (PMLA) module, which is specifically designed to align with the Mamba architecture by leveraging the shared latent space characteristics of PMLA and Mamba. This enables enhanced local context modeling while preserving overall efficiency. To further enhance representation learning, we incorporate a conditional diffusion mechanism during pretraining, which denoises perturbed feature sequences without relying on explicit point-wise reconstruction. Experimental results demonstrate that PointLAMA achieves competitive performance on multiple benchmark datasets with minimal parameter count and FLOPs, validating its effectiveness for efficient point cloud pretraining.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.