Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
Gemini 2.5 Pro Premium
52 tokens/sec
GPT-5 Medium
24 tokens/sec
GPT-5 High Premium
28 tokens/sec
GPT-4o
85 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
478 tokens/sec
Kimi K2 via Groq Premium
221 tokens/sec
2000 character limit reached

SceneLoom: Communicating Data with Scene Context (2507.16466v1)

Published 22 Jul 2025 in cs.HC

Abstract: In data-driven storytelling contexts such as data journalism and data videos, data visualizations are often presented alongside real-world imagery to support narrative context. However, these visualizations and contextual images typically remain separated, limiting their combined narrative expressiveness and engagement. Achieving this is challenging due to the need for fine-grained alignment and creative ideation. To address this, we present SceneLoom, a Vision-LLM (VLM)-powered system that facilitates the coordination of data visualization with real-world imagery based on narrative intents. Through a formative study, we investigated the design space of coordination relationships between data visualization and real-world scenes from the perspectives of visual alignment and semantic coherence. Guided by the derived design considerations, SceneLoom leverages VLMs to extract visual and semantic features from scene images and data visualization, and perform design mapping through a reasoning process that incorporates spatial organization, shape similarity, layout consistency, and semantic binding. The system generates a set of contextually expressive, image-driven design alternatives that achieve coherent alignments across visual, semantic, and data dimensions. Users can explore these alternatives, select preferred mappings, and further refine the design through interactive adjustments and animated transitions to support expressive data communication. A user study and an example gallery validate SceneLoom's effectiveness in inspiring creative design and facilitating design externalization.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.