Meta-learning of Gibbs states for many-body Hamiltonians with applications to Quantum Boltzmann Machines (2507.16373v1)
Abstract: The preparation of quantum Gibbs states is a fundamental challenge in quantum computing, essential for applications ranging from modeling open quantum systems to quantum machine learning. Building on the Meta-Variational Quantum Eigensolver framework proposed by Cervera-Lierta et al.(2021) and a problem driven ansatz design, we introduce two meta-learning algorithms: Meta-Variational Quantum Thermalizer (Meta-VQT) and Neural Network Meta-VQT (NN-Meta VQT) for efficient thermal state preparation of parametrized Hamiltonians on Noisy Intermediate-Scale Quantum (NISQ) devices. Meta-VQT utilizes a fully quantum ansatz, while NN Meta-VQT integrates a quantum classical hybrid architecture. Both leverage collective optimization over training sets to generalize Gibbs state preparation to unseen parameters. We validate our methods on upto 8-qubit Transverse Field Ising Model and the 2-qubit Heisenberg model with all field terms, demonstrating efficient thermal state generation beyond training data. For larger systems, we show that our meta-learned parameters when combined with appropriately designed ansatz serve as warm start initializations, significantly outperforming random initializations in the optimization tasks. Furthermore, a 3- qubit Kitaev ring example showcases our algorithm's effectiveness across finite-temperature crossover regimes. Finally, we apply our algorithms to train a Quantum Boltzmann Machine (QBM) on a 2-qubit Heisenberg model with all field terms, achieving enhanced training efficiency, improved Gibbs state accuracy, and a 30-fold runtime speedup over existing techniques such as variational quantum imaginary time (VarQITE)-based QBM highlighting the scalability and practicality of meta-algorithm-based QBMs.