Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
94 tokens/sec
Gemini 2.5 Pro Premium
55 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
24 tokens/sec
GPT-4o
103 tokens/sec
DeepSeek R1 via Azure Premium
93 tokens/sec
GPT OSS 120B via Groq Premium
462 tokens/sec
Kimi K2 via Groq Premium
254 tokens/sec
2000 character limit reached

Mind the Gap: Evaluating the Representativeness of Quantitative Medical Language Reasoning LLM Benchmarks for African Disease Burdens (2507.16322v1)

Published 22 Jul 2025 in cs.AI

Abstract: Introduction: Existing medical LLM benchmarks largely reflect examination syllabi and disease profiles from high income settings, raising questions about their validity for African deployment where malaria, HIV, TB, sickle cell disease and other neglected tropical diseases (NTDs) dominate burden and national guidelines drive care. Methodology: We systematically reviewed 31 quantitative LLM evaluation papers (Jan 2019 May 2025) identifying 19 English medical QA benchmarks. Alama Health QA was developed using a retrieval augmented generation framework anchored on the Kenyan Clinical Practice Guidelines. Six widely used sets (AfriMedQA, MMLUMedical, PubMedQA, MedMCQA, MedQAUSMLE, and guideline grounded Alama Health QA) underwent harmonized semantic profiling (NTD proportion, recency, readability, lexical diversity metrics) and blinded expert rating across five dimensions: clinical relevance, guideline alignment, clarity, distractor plausibility, and language/cultural fit. Results: Alama Health QA captured >40% of all NTD mentions across corpora and the highest within set frequencies for malaria (7.7%), HIV (4.1%), and TB (5.2%); AfriMedQA ranked second but lacked formal guideline linkage. Global benchmarks showed minimal representation (e.g., sickle cell disease absent in three sets) despite large scale. Qualitatively, Alama scored highest for relevance and guideline alignment; PubMedQA lowest for clinical utility. Discussion: Quantitative medical LLM benchmarks widely used in the literature underrepresent African disease burdens and regulatory contexts, risking misleading performance claims. Guideline anchored, regionally curated resources such as Alama Health QA and expanded disease specific derivatives are essential for safe, equitable model evaluation and deployment across African health systems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube