Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
92 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
32 tokens/sec
GPT-5 High Premium
30 tokens/sec
GPT-4o
67 tokens/sec
DeepSeek R1 via Azure Premium
91 tokens/sec
GPT OSS 120B via Groq Premium
452 tokens/sec
Kimi K2 via Groq Premium
190 tokens/sec
2000 character limit reached

The Intrinsic Riemannian Proximal Gradient Method for Convex Optimization (2507.16055v1)

Published 21 Jul 2025 in math.OC, cs.NA, math.DG, and math.NA

Abstract: We consider a class of (possibly strongly) geodesically convex optimization problems on Hadamard manifolds, where the objective function splits into the sum of a smooth and a possibly nonsmooth function. We introduce an intrinsic convex Riemannian proximal gradient (CRPG) method that employs the manifold proximal map for the nonsmooth step, without operating in the embedding or tangent space. A sublinear convergence rate for convex problems and a linear convergence rate for strongly convex problems is established, and we derive fundamental proximal gradient inequalities that generalize the Euclidean case. Our numerical experiments on hyperbolic spaces and manifolds of symmetric positive definite matrices demonstrate substantial computational advantages over existing methods.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube