Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
116 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
24 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
35 tokens/sec
2000 character limit reached

Reactivation: Empirical NTK Dynamics Under Task Shifts (2507.16039v1)

Published 21 Jul 2025 in cs.LG and cs.AI

Abstract: The Neural Tangent Kernel (NTK) offers a powerful tool to study the functional dynamics of neural networks. In the so-called lazy, or kernel regime, the NTK remains static during training and the network function is linear in the static neural tangents feature space. The evolution of the NTK during training is necessary for feature learning, a key driver of deep learning success. The study of the NTK dynamics has led to several critical discoveries in recent years, in generalization and scaling behaviours. However, this body of work has been limited to the single task setting, where the data distribution is assumed constant over time. In this work, we present a comprehensive empirical analysis of NTK dynamics in continual learning, where the data distribution shifts over time. Our findings highlight continual learning as a rich and underutilized testbed for probing the dynamics of neural training. At the same time, they challenge the validity of static-kernel approximations in theoretical treatments of continual learning, even at large scale.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.