Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Towards Reliable, Uncertainty-Aware Alignment (2507.15906v1)

Published 21 Jul 2025 in cs.LG and cs.AI

Abstract: Alignment of LLMs typically involves training a reward model on preference data, followed by policy optimization with respect to the reward model. However, optimizing policies with respect to a single reward model estimate can render it vulnerable to inaccuracies in the reward model. We empirically study the variability of reward model training on open-source benchmarks. We observe that independently trained reward models on the same preference dataset can exhibit substantial disagreement, highlighting the instability of current alignment strategies. Employing a theoretical model, we demonstrate that variability in reward model estimation can cause overfitting, leading to the risk of performance degradation. To mitigate this risk, we propose a variance-aware policy optimization framework for preference-based alignment. The key ingredient of the framework is a new policy regularizer that incorporates reward model variance estimates. We show that variance-aware policy optimization provably reduces the risk of outputting a worse policy than the default. Experiments across diverse LLM and reward model configurations confirm that our approach yields more stable and robust alignment than the standard (variance-unaware) pipeline.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com

alphaXiv