Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Efficient Routing of Inference Requests across LLM Instances in Cloud-Edge Computing (2507.15553v1)

Published 21 Jul 2025 in cs.DC

Abstract: The rising demand for LLM inference services has intensified pressure on computational resources, resulting in latency and cost challenges. This paper introduces a novel routing algorithm based on the Non-dominated Sorting Genetic Algorithm II (NSGA-II) to distribute inference requests across heterogeneous LLM instances in a cloud-edge computing environment. Formulated as a multi-objective optimization problem, the algorithm balances response quality, response time, and inference cost, adapting to request heterogeneity (e.g., varying complexity and prompt lengths) and node diversity (e.g., edge vs. cloud resources). This adaptive routing algorithm optimizes performance under dynamic workloads. We benchmark the approach using a testbed with datasets including Stanford Question Answering Dataset (SQuAD), Mostly Basic Python Problems (MBPP), Hella Situations With Adversarial Generations (HellaSwag), and Grade School Math 8K (GSM8K). Experimental results show our solution, compared to the baselines, achieves up to 95.2% and 34.9% improvements in terms of response time and cost, respectively. These findings validate the algorithm's effectiveness for scalable LLM deployments.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.