Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Approaches for modelling the term-structure of default risk under IFRS 9: A tutorial using discrete-time survival analysis (2507.15441v1)

Published 21 Jul 2025 in q-fin.RM and stat.AP

Abstract: Under the International Financial Reporting Standards (IFRS) 9, credit losses ought to be recognised timeously and accurately. This requirement belies a certain degree of dynamicity when estimating the constituent parts of a credit loss event, most notably the probability of default (PD). It is notoriously difficult to produce such PD-estimates at every point of loan life that are adequately dynamic and accurate, especially when considering the ever-changing macroeconomic background. In rendering these lifetime PD-estimates, the choice of modelling technique plays an important role, which is why we first review a few classes of techniques, including the merits and limitations of each. Our main contribution however is the development of an in-depth and data-driven tutorial using a particular class of techniques called discrete-time survival analysis. This tutorial is accompanied by a diverse set of reusable diagnostic measures for evaluating various aspects of a survival model and the underlying data. A comprehensive R-based codebase is further contributed. We believe that our work can help cultivate common modelling practices under IFRS 9, and should be valuable to practitioners, model validators, and regulators alike.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com