Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
116 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
24 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
35 tokens/sec
2000 character limit reached

Accelerated Bayesian Optimal Experimental Design via Conditional Density Estimation and Informative Data (2507.15235v1)

Published 21 Jul 2025 in stat.ML and cs.LG

Abstract: The Design of Experiments (DOEs) is a fundamental scientific methodology that provides researchers with systematic principles and techniques to enhance the validity, reliability, and efficiency of experimental outcomes. In this study, we explore optimal experimental design within a Bayesian framework, utilizing Bayes' theorem to reformulate the utility expectation--originally expressed as a nested double integral--into an independent double integral form, significantly improving numerical efficiency. To further accelerate the computation of the proposed utility expectation, conditional density estimation is employed to approximate the ratio of two Gaussian random fields, while covariance serves as a selection criterion to identify informative datasets during model fitting and integral evaluation. In scenarios characterized by low simulation efficiency and high costs of raw data acquisition, key challenges such as surrogate modeling, failure probability estimation, and parameter inference are systematically restructured within the Bayesian experimental design framework. The effectiveness of the proposed methodology is validated through both theoretical analysis and practical applications, demonstrating its potential for enhancing experimental efficiency and decision-making under uncertainty.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets