Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

LibLMFuzz: LLM-Augmented Fuzz Target Generation for Black-box Libraries (2507.15058v1)

Published 20 Jul 2025 in cs.CR, cs.LG, and cs.SE

Abstract: A fundamental problem in cybersecurity and computer science is determining whether a program is free of bugs and vulnerabilities. Fuzzing, a popular approach to discovering vulnerabilities in programs, has several advantages over alternative strategies, although it has investment costs in the form of initial setup and continuous maintenance. The choice of fuzzing is further complicated when only a binary library is available, such as the case of closed-source and proprietary software. In response, we introduce LibLMFuzz, a framework that reduces costs associated with fuzzing closed-source libraries by pairing an agentic LLM with a lightweight tool-chain (disassembler/compiler/fuzzer) to autonomously analyze stripped binaries, plan fuzz strategies, generate drivers, and iteratively self-repair build or runtime errors. Tested on four widely-used Linux libraries, LibLMFuzz produced syntactically correct drivers for all 558 fuzz-able API functions, achieving 100% API coverage with no human intervention. Across the 1601 synthesized drivers, 75.52% were nominally correct on first execution. The results show that LLM-augmented middleware holds promise in reducing the costs of fuzzing black box components and provides a foundation for future research efforts. Future opportunities exist for research in branch coverage.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com