Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

A Comparative Analysis of Statistical and Machine Learning Models for Outlier Detection in Bitcoin Limit Order Books (2507.14960v1)

Published 20 Jul 2025 in q-fin.TR, cs.AI, cs.LG, math.ST, and stat.TH

Abstract: The detection of outliers within cryptocurrency limit order books (LOBs) is of paramount importance for comprehending market dynamics, particularly in highly volatile and nascent regulatory environments. This study conducts a comprehensive comparative analysis of robust statistical methods and advanced machine learning techniques for real-time anomaly identification in cryptocurrency LOBs. Within a unified testing environment, named AITA Order Book Signal (AITA-OBS), we evaluate the efficacy of thirteen diverse models to identify which approaches are most suitable for detecting potentially manipulative trading behaviours. An empirical evaluation, conducted via backtesting on a dataset of 26,204 records from a major exchange, demonstrates that the top-performing model, Empirical Covariance (EC), achieves a 6.70% gain, significantly outperforming a standard Buy-and-Hold benchmark. These findings underscore the effectiveness of outlier-driven strategies and provide insights into the trade-offs between model complexity, trade frequency, and performance. This study contributes to the growing corpus of research on cryptocurrency market microstructure by furnishing a rigorous benchmark of anomaly detection models and highlighting their potential for augmenting algorithmic trading and risk management.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)