Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 36 tok/s
GPT-5 High 40 tok/s Pro
GPT-4o 99 tok/s
GPT OSS 120B 461 tok/s Pro
Kimi K2 191 tok/s Pro
2000 character limit reached

AGENTS-LLM: Augmentative GENeration of Challenging Traffic Scenarios with an Agentic LLM Framework (2507.13729v1)

Published 18 Jul 2025 in cs.RO and cs.AI

Abstract: Rare, yet critical, scenarios pose a significant challenge in testing and evaluating autonomous driving planners. Relying solely on real-world driving scenes requires collecting massive datasets to capture these scenarios. While automatic generation of traffic scenarios appears promising, data-driven models require extensive training data and often lack fine-grained control over the output. Moreover, generating novel scenarios from scratch can introduce a distributional shift from the original training scenes which undermines the validity of evaluations especially for learning-based planners. To sidestep this, recent work proposes to generate challenging scenarios by augmenting original scenarios from the test set. However, this involves the manual augmentation of scenarios by domain experts. An approach that is unable to meet the demands for scale in the evaluation of self-driving systems. Therefore, this paper introduces a novel LLM-agent based framework for augmenting real-world traffic scenarios using natural language descriptions, addressing the limitations of existing methods. A key innovation is the use of an agentic design, enabling fine-grained control over the output and maintaining high performance even with smaller, cost-effective LLMs. Extensive human expert evaluation demonstrates our framework's ability to accurately adhere to user intent, generating high quality augmented scenarios comparable to those created manually.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com