Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
116 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
24 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
35 tokens/sec
2000 character limit reached

Bayesian Optimization for Molecules Should Be Pareto-Aware (2507.13704v1)

Published 18 Jul 2025 in cs.LG and stat.ML

Abstract: Multi-objective Bayesian optimization (MOBO) provides a principled framework for navigating trade-offs in molecular design. However, its empirical advantages over scalarized alternatives remain underexplored. We benchmark a simple Pareto-based MOBO strategy -- Expected Hypervolume Improvement (EHVI) -- against a simple fixed-weight scalarized baseline using Expected Improvement (EI), under a tightly controlled setup with identical Gaussian Process surrogates and molecular representations. Across three molecular optimization tasks, EHVI consistently outperforms scalarized EI in terms of Pareto front coverage, convergence speed, and chemical diversity. While scalarization encompasses flexible variants -- including random or adaptive schemes -- our results show that even strong deterministic instantiations can underperform in low-data regimes. These findings offer concrete evidence for the practical advantages of Pareto-aware acquisition in de novo molecular optimization, especially when evaluation budgets are limited and trade-offs are nontrivial.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets