Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
36 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
37 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
4 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Binarizing Physics-Inspired GNNs for Combinatorial Optimization (2507.13703v1)

Published 18 Jul 2025 in cs.LG and cs.AI

Abstract: Physics-inspired graph neural networks (PI-GNNs) have been utilized as an efficient unsupervised framework for relaxing combinatorial optimization problems encoded through a specific graph structure and loss, reflecting dependencies between the problem's variables. While the framework has yielded promising results in various combinatorial problems, we show that the performance of PI-GNNs systematically plummets with an increasing density of the combinatorial problem graphs. Our analysis reveals an interesting phase transition in the PI-GNNs' training dynamics, associated with degenerate solutions for the denser problems, highlighting a discrepancy between the relaxed, real-valued model outputs and the binary-valued problem solutions. To address the discrepancy, we propose principled alternatives to the naive strategy used in PI-GNNs by building on insights from fuzzy logic and binarized neural networks. Our experiments demonstrate that the portfolio of proposed methods significantly improves the performance of PI-GNNs in increasingly dense settings.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com