Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
114 tokens/sec
Gemini 2.5 Pro Premium
26 tokens/sec
GPT-5 Medium
20 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
10 tokens/sec
DeepSeek R1 via Azure Premium
55 tokens/sec
2000 character limit reached

GEMMAS: Graph-based Evaluation Metrics for Multi Agent Systems (2507.13190v1)

Published 17 Jul 2025 in cs.CL

Abstract: Multi-agent systems built on LLMs have shown strong performance on collaborative reasoning tasks. However, existing evaluations focus only on the correctness of the final output, overlooking how inefficient communication and poor coordination contribute to redundant reasoning and higher computational costs. We introduce GEMMAS, a graph-based evaluation framework that analyzes the internal collaboration process by modeling agent interactions as a directed acyclic graph. To capture collaboration quality, we propose two process-level metrics: Information Diversity Score (IDS) to measure semantic variation in inter-agent messages, and Unnecessary Path Ratio (UPR) to quantify redundant reasoning paths. We evaluate GEMMAS across five benchmarks and highlight results on GSM8K, where systems with only a 2.1% difference in accuracy differ by 12.8% in IDS and 80% in UPR, revealing substantial variation in internal collaboration. These findings demonstrate that outcome-only metrics are insufficient for evaluating multi-agent performance and highlight the importance of process-level diagnostics in designing more interpretable and resource-efficient collaborative AI systems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.