Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
89 tokens/sec
Gemini 2.5 Pro Premium
41 tokens/sec
GPT-5 Medium
23 tokens/sec
GPT-5 High Premium
19 tokens/sec
GPT-4o
96 tokens/sec
DeepSeek R1 via Azure Premium
88 tokens/sec
GPT OSS 120B via Groq Premium
478 tokens/sec
Kimi K2 via Groq Premium
221 tokens/sec
2000 character limit reached

UniSLU: Unified Spoken Language Understanding from Heterogeneous Cross-Task Datasets (2507.12951v1)

Published 17 Jul 2025 in eess.AS, cs.AI, cs.CL, cs.MM, and cs.SD

Abstract: Spoken Language Understanding (SLU) plays a crucial role in speech-centric multimedia applications, enabling machines to comprehend spoken language in scenarios such as meetings, interviews, and customer service interactions. SLU encompasses multiple tasks, including Automatic Speech Recognition (ASR), spoken Named Entity Recognition (NER), and spoken Sentiment Analysis (SA). However, existing methods often rely on separate model architectures for individual tasks such as spoken NER and SA, which increases system complexity, limits cross-task interaction, and fails to fully exploit heterogeneous datasets available across tasks. To address these limitations, we propose UniSLU, a unified framework that jointly models multiple SLU tasks within a single architecture. Specifically, we propose a unified representation for diverse SLU tasks, enabling full utilization of heterogeneous datasets across multiple tasks. Built upon this representation, we propose a unified generative method that jointly models ASR, spoken NER, and SA tasks, enhancing task interactions and enabling seamless integration with LLMs to harness their powerful generative capabilities. Extensive experiments on public SLU datasets demonstrate the effectiveness of our approach, achieving superior SLU performance compared to several benchmark methods, making it well-suited for real-world speech-based multimedia scenarios. We will release all code and models at github to facilitate future research.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.