Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

When Retriever Meets Generator: A Joint Model for Code Comment Generation (2507.12558v1)

Published 16 Jul 2025 in cs.SE

Abstract: Automatically generating concise, informative comments for source code can lighten documentation effort and accelerate program comprehension. Retrieval-augmented approaches first fetch code snippets with existing comments and then synthesize a new comment, yet retrieval and generation are typically optimized in isolation, allowing irrelevant neighbors topropagate noise downstream. To tackle the issue, we propose a novel approach named RAGSum with the aim of both effectiveness and efficiency in recommendations. RAGSum is built on top offuse retrieval and generation using a single CodeT5 backbone. We report preliminary results on a unified retrieval-generation framework built on CodeT5. A contrastive pre-training phase shapes code embeddings for nearest-neighbor search; these weights then seed end-to-end training with a composite loss that (i) rewards accurate top-k retrieval; and (ii) minimizes comment-generation error. More importantly, a lightweight self-refinement loop is deployed to polish the final output. We evaluated theframework on three cross-language benchmarks (Java, Python, C), and compared it with three well-established baselines. The results show that our approach substantially outperforms thebaselines with respect to BLEU, METEOR, and ROUTE-L. These findings indicate that tightly coupling retrieval and generationcan raise the ceiling for comment automation and motivateforthcoming replications and qualitative developer studies.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com