Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

Kodezi Chronos: A Debugging-First Language Model for Repository-Scale, Memory-Driven Code Understanding (2507.12482v1)

Published 14 Jul 2025 in cs.SE, cs.AI, cs.CE, and cs.LG

Abstract: LLMs have advanced code generation and software automation, but are fundamentally constrained by limited inference-time context and lack of explicit code structure reasoning. We introduce Kodezi Chronos, a next-generation architecture for autonomous code understanding, debugging, and maintenance, designed to operate across ultra-long contexts comprising entire codebases, histories, and documentation, all without fixed window limits. Kodezi Chronos leverages a multi-level embedding memory engine, combining vector and graph-based indexing with continuous code-aware retrieval. This enables efficient and accurate reasoning over millions of lines of code, supporting repository-scale comprehension, multi-file refactoring, and real-time self-healing actions. Our evaluation introduces a novel Multi Random Retrieval benchmark, specifically tailored to the software engineering domain. Unlike classical retrieval benchmarks, this method requires the model to resolve arbitrarily distant and obfuscated associations across code artifacts, simulating realistic tasks such as variable tracing, dependency migration, and semantic bug localization. Chronos outperforms prior LLMs and code models, demonstrating a 23% improvement in real-world bug detection and reducing debugging cycles by up to 40% compared to traditional sequence-based approaches. By natively interfacing with IDEs and CI/CD workflows, Chronos enables seamless, autonomous software maintenance, elevating code reliability and productivity while reducing manual effort. These results mark a critical advance toward self-sustaining, continuously optimized software ecosystems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com