Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
52 tokens/sec
GPT-5 Medium
20 tokens/sec
GPT-5 High Premium
28 tokens/sec
GPT-4o
100 tokens/sec
DeepSeek R1 via Azure Premium
98 tokens/sec
GPT OSS 120B via Groq Premium
459 tokens/sec
Kimi K2 via Groq Premium
197 tokens/sec
2000 character limit reached

S2WTM: Spherical Sliced-Wasserstein Autoencoder for Topic Modeling (2507.12451v1)

Published 16 Jul 2025 in cs.CL, cs.AI, and cs.LG

Abstract: Modeling latent representations in a hyperspherical space has proven effective for capturing directional similarities in high-dimensional text data, benefiting topic modeling. Variational autoencoder-based neural topic models (VAE-NTMs) commonly adopt the von Mises-Fisher prior to encode hyperspherical structure. However, VAE-NTMs often suffer from posterior collapse, where the KL divergence term in the objective function highly diminishes, leading to ineffective latent representations. To mitigate this issue while modeling hyperspherical structure in the latent space, we propose the Spherical Sliced Wasserstein Autoencoder for Topic Modeling (S2WTM). S2WTM employs a prior distribution supported on the unit hypersphere and leverages the Spherical Sliced-Wasserstein distance to align the aggregated posterior distribution with the prior. Experimental results demonstrate that S2WTM outperforms state-of-the-art topic models, generating more coherent and diverse topics while improving performance on downstream tasks.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com