Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
Gemini 2.5 Pro Premium
40 tokens/sec
GPT-5 Medium
33 tokens/sec
GPT-5 High Premium
28 tokens/sec
GPT-4o
105 tokens/sec
DeepSeek R1 via Azure Premium
93 tokens/sec
GPT OSS 120B via Groq Premium
479 tokens/sec
Kimi K2 via Groq Premium
160 tokens/sec
2000 character limit reached

Convergence of drift-diffusion PDEs arising as Wasserstein gradient flows of convex functions (2507.12385v1)

Published 16 Jul 2025 in math.OC and math.AP

Abstract: We study the quantitative convergence of drift-diffusion PDEs that arise as Wasserstein gradient flows of linearly convex functions over the space of probability measures on ${\mathbb R}d$. In this setting, the objective is in general not displacement convex, so it is not clear a priori whether global convergence even holds. Still, our analysis reveals that diffusion {allows} a favorable interaction between Wasserstein geometry and linear convexity, leading to a general quantitative convergence theory, analogous to that of gradient flows in convex settings in the Euclidean space. Specifically, we prove that if the objective is convex and suitably coercive, the suboptimality gap decreases at a rate $O(1/t)$. This improves to a rate faster than any polynomial -- or even exponential in compact settings -- when the objective is strongly convex relative to the entropy. Our results extend the range of mean-field Langevin dynamics that enjoy quantitative convergence guarantees, and enable new applications to optimization over the space of probability measures. To illustrate this, we show quantitative convergence results for the minimization of entropy-regularized nonconvex problems, we propose and study an \emph{approximate Fisher Information} regularization covered by our setting, and we apply our results to an estimator for trajectory inference which involves the minimization of the relative entropy with respect to the Wiener measure in path space.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.