Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Deciphering Delivery Mobility: A City-Scale, Path-Reconstructed Trajectory Dataset of Instant Delivery Riders (2507.11584v1)

Published 15 Jul 2025 in physics.soc-ph

Abstract: The rapid expansion of the on-demand economy has profoundly reshaped urban mobility and logistics, yet high-resolution trajectory data on delivery riders' consistent movements remains scarce. Here, we present a city-scale, high-resolution spatiotemporal trajectory dataset of on-demand instant delivery riders in Beijing. This dataset was produced through a path-reconstruction methodology applied to an open dataset containing delivery order information. Subsequently, detailed and continuous trajectories were reconstructed by simulating cycling routes via a major online map service to ensure they were realistically aligned. For validation, the reconstructed paths were compared against ground-truth travel metrics, revealing a strong correlation with actual travel patterns. The analysis yielded Pearson correlation coefficients of 0.92 for route distance and 0.79 for route duration. This high fidelity ensures the dataset's utility for describing delivery riders' mobility. This publicly available resource offers unprecedented opportunities for researchers in urban planning, transportation studies, logistics optimization, and computational social science to investigate rider behavior, model urban freight systems, and develop more efficient and sustainable city-wide logistics solutions.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.