Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
116 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

HUG-VAS: A Hierarchical NURBS-Based Generative Model for Aortic Geometry Synthesis and Controllable Editing (2507.11474v1)

Published 15 Jul 2025 in cs.CV

Abstract: Accurate characterization of vascular geometry is essential for cardiovascular diagnosis and treatment planning. Traditional statistical shape modeling (SSM) methods rely on linear assumptions, limiting their expressivity and scalability to complex topologies such as multi-branch vascular structures. We introduce HUG-VAS, a Hierarchical NURBS Generative model for Vascular geometry Synthesis, which integrates NURBS surface parameterization with diffusion-based generative modeling to synthesize realistic, fine-grained aortic geometries. Trained with 21 patient-specific samples, HUG-VAS generates anatomically faithful aortas with supra-aortic branches, yielding biomarker distributions that closely match those of the original dataset. HUG-VAS adopts a hierarchical architecture comprising a denoising diffusion model that generates centerlines and a guided diffusion model that synthesizes radial profiles conditioned on those centerlines, thereby capturing two layers of anatomical variability. Critically, the framework supports zero-shot conditional generation from image-derived priors, enabling practical applications such as interactive semi-automatic segmentation, robust reconstruction under degraded imaging conditions, and implantable device optimization. To our knowledge, HUG-VAS is the first SSM framework to bridge image-derived priors with generative shape modeling via a unified integration of NURBS parameterization and hierarchical diffusion processes.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com